Thành phần hóa sinh chủ chốt Trao_đổi_chất

Xem thêm thông tin: Phân tử sinh học, Tế bào, và Hóa sinh

Hầu hết các cấu trúc và thành phần làm nên động vật, thực vật hay vi sinh vật được cấu thành từ bốn đại phân tử cơ bản: axit amin, axit nucleic, carbohydratelipid (thường được gọi là chất béo). Vì những phân tử này rất quan trọng cho sự sống, nên các phản ứng trao đổi chất tập trung vào việc tạo ra các phân tử này trong quá trình xây dựng tế bào, hoặc phân giải chúng và sử dụng chúng làm nguồn năng lượng qua quá trình tiêu hóa. Các chất hóa sinh này có thể được kết hợp với nhau để tạo ra các polymerr như DNAprotein, các đại phân tử thiết yếu của sự sống.

Loại phân tửTên monomerTên polymerVí dụ về dạng polymer
Axit aminAxit aminProtein (cấu thành từ chuỗi polypeptide)Protein dạng sợi hoặc protein dạng cầu
CarbohydrateMonosaccharidePolysaccharideTinh bột, glycogen hoặc cellulose
Axit nucleicNucleotidePolynucleotideDNA hoặc RNA
Lipidđa dạng

Axit amin và protein

Cấu trúc của một triglycyride.

Protein được tạo thành từ chuỗi các axit amin được nối với nhau bởi các liên kết peptide. Nhiều protein là các enzyme tham gia xúc tác các phản ứng hóa học trong quá trình trao đổi chất. Một số protein khác lại có chức năng cấu trúc hoặc chức năng cơ học, chẳng hạn như những protein hình thành khung xương tế bào-hệ thống "giàn giáo" giúp duy trì hình dạng cả tế bào.[6] Protein cũng rất quan trọng cho một số chức năng khác như tín hiệu tế bào liên lạc, đáp ứng miễn dịch, bám dính tế bào, vận chuyển chủ động qua màng sinh chấtchu kỳ tế bào.[7] Axit amin cũng góp phần cho chuyển hóa năng lượng tế bào bằng cách cung cấp nguồn carbon để đi vào chu trình axit citric (chu trình axit tricarboxylic),[8] đặc biệt khi nguồn năng lượng chính, chẳng hạn như glucose, bị cạn kiệt hoặc khi các tế bào đang trải qua những stress về chuyển hóa.[9]

Biểu đồ cho ta thấy một số lượng lớn các con đường chuyển hóa

Lipid

Lipid là nhóm chất sinh hóa đa dạng nhất. Chức năng cấu trúc chính của chúng là giúp tạo nên các phần của màng sinh học cả bên trong và bên ngoài, chẳng hạn như màng tế bào hoặc chúng cũng có thể dùng làm nguồn năng lượng cho tế bào.[7] Lipid thường được định nghĩa là các phân tử sinh học kỵ nước hoặc lưỡng phần nhưng lại có thể tan trong các dung môi hữu cơ như benzene hoặc chloroform.[10] Chất béo là một nhóm lớn các hợp chất có chứa các axit béoglycerol. Triacylglyceride là một phân tử được cấu tạo từ một glycerol gắn với ba este axit béo.[11] Ngoài cấu trúc cơ bản này thì trong tế bào còn tồn tại một số biến thể, chẳng hạn như sphingolipid với mạch khung được thay bằng sphingosine, phospholipid với một trong ba axit béo được thay bằng nhóm ưa nước phosphat. Các steroid như cholesterol cũng là một nhóm lớn khác của lipid.[12]

Glucose có thể tồn tại ở cả dạng thẳng và vòng.

Carbohydrate

Carbohydrate có thể là aldehyde hoặc ketone, với nhiều nhóm hydroxyl được gắn vào, và có thể tồn tại dưới dạng thẳng hoặc vòng. Carbohydrate là nhóm các phân tử sinh học phong phú nhất, và phù hợp với nhiều vai trò, chẳng hạn như lưu trữ và vận chuyển năng lượng (tinh bột, glycogen) hay đóng vai trò là các thành phần cấu trúc (cellulose ở thực vật, chitin ở động vật).[7] Các đơn vị carbohydrate cơ bản được gọi là monosaccharide (đường đơn), có thể kể đến như galactose, fructose, và quan trọng nhất là glucose. Monosaccharide có thể được liên kết với nhau để tạo thành các polysaccharide (đường đa) theo vô số cách khác nhau.[13]

Nucleotide

Hai axit nucleic, DNARNA, là các polyme của nucleotide. Mỗi nucleotide gồm một nhóm phosphat gắn với một đường ribose hoặc deoxyribose cùng với một base nitơ. Axit nucleic rất quan trọng cho việc lưu trữ và truyền đạt thông tin di truyền, thông tin di truyền này sẽ được "diễn giải" qua quá trình phiên mãsinh tổng hợp protein.[7] Thông tin này được bảo quản bởi các cơ chế sửa chữa DNA và được nhân lên thông qua quá trình sao chép DNA. Nhiều virus lại sử dụng bộ gen RNA, chẳng hạn như HIV, và có thể phiên mã ngược để tạo ra DNA từ bộ gen RNA của virus.[14] RNA trong ribozyme như thể cắt nối (spliceosome) và ribôxôm cũng có hoạt động tương tự như enzyme vì nó có thể xúc tác cho các phản ứng hóa học. Các nucleoside riêng lẻ được tạo ra bằng cách gắn một nucleobase với đường ribose. Các bazơ này là các hợp chất dị vòng có chứa nitơ, được chia làm hai nhóm là purine hoặc pyrimidine. Nucleotide cũng có thể hoạt động như các coenzyme trong phản ứng chuyển-nhóm-chuyển hóa.[15]

Coenzyme

Bài chi tiết: Coenzyme
Cấu trúc của coenzyme acetyl-CoA. Nhóm acetyl có thể chuyển được liên kết với nguyên tử lưu huỳnh ở tận cùng bên trái.

Trao đổi chất liên quan đến một lượng lớn các phản ứng hóa học, nhưng hầu hết có thể được xếp vào một vài loại phản ứng cơ bản liên quan đến việc chuyển các nhóm chức của nguyên tử và liên kết của chúng giữa các phân tử.[16] Các phản ứng hóa học thông thường này cho phép các tế bào sử dụng một nhóm nhỏ các chất chuyển hóa trung gian để mang các nhóm chức giữa các phản ứng khác nhau.[15] Những chất chuyển nhóm trung gian này được gọi là coenzyme. Mỗi loại phản ứng chuyển nhóm này được thực hiện bởi một coenzyme đặc hiệu, là cơ chất cho một tập hợp các enzyme tạo ra, và một tập hợp enzyme khác sử dụng chúng. Do đó, các coenzyme này liên tục được tạo ra, sử dụng và sau đó lại được tái tạo.[17]

Một coenzym quan trọng là adenosine triphosphate (ATP), "đồng tiền năng lượng" chung cho tế bào. Nucleotide này được sử dụng để chuyển năng lượng hóa học giữa các phản ứng hóa học khác nhau. Chỉ có một lượng nhỏ ATP trong các tế bào, nhưng chúng được tái tạo liên tục; mỗi ngày cơ thể con người có thể sử dụng một lượng ATP bằng với khối lượng của mình.[17] ATP hoạt động như một cầu nối giữa hai quá trình là dị hóađồng hóa. Dị hóa thì phá hủy các phân tử, còn đồng hóa lại xây nên những phân tử này. Phản ứng dị hóa tạo ra ATP, và phản ứng đồng hóa lại sử dụng ATP này. ATP cũng có thể đóng vai trò như chất mang nhóm phosphate trong các phản ứng phosphoryl hóa.

Vitamin là một loại hợp chất hữu cơ cần thiết với lượng nhỏ mà không thể tự tổng hợp trong các tế bào. Trong dinh dưỡng ở người, hầu hết các vitamin hoạt động như coenzyme sau khi sửa đổi; ví dụ, tất cả các vitamin tan trong nước được phosphoryl hóa hoặc được kết hợp với nucleotide khi chúng được sử dụng trong tế bào.[18] Nicotinamide adenine dinucleotide (NAD+), một dẫn xuất của vitamin B3 (niacin), là một coenzyme quan trọng đóng vai trò làm chất nhận hydro. Có hàng trăm loại enzyme dehydrogenase riêng biệt cho việc loại bỏ các electron khỏi cơ chất của chúng và khử NAD+ thành NADH. NADH này lại có thể sử dụng để khử các cơ chất khác với hoạt động của enzyme reductase.[19] Nicotinamide adenine dinucleotide tồn tại ở hai dạng "gần gũi" trong tế bào là NADH và NADPH. Dạng NAD+/NADH quan trọng hơn trong các phản ứng dị hóa, còn dạng NADP+ / NADPH được sử dụng trong các phản ứng đồng hóa.

Chất khoáng và cofactor

Cấu trúc của hemoglobin. Các tiểu đơn vị protein được tô màu đỏ và xanh dương, và các nhóm heme chứa sắt thì có màu xanh lục. Từ PDB: 1GZX​.

Các nguyên tố vô cơ cũng đóng vai trò quan trọng trong quá trình trao đổi chất; một số thì rất giàu trong tế bào (ví dụ: natri và kali) trong khi một số khác hoạt động ở nồng độ rất thấp. Khoảng 99% khối lượng của động vật có vú được tạo thành từ các nguyên tố carbon, nitơ, canxi, natri, clo, kali, hydro, phospho, oxylưu huỳnh.[20] Các hợp chất hữu cơ (protein, lipid và carbohydrate) có phần lớn thành phần là carbon và nitơ; hầu hết oxy và hydro có mặt dưới dạng nước.[20]

Các nguyên tố vô cơ phong phú đóng vai trò như các ion điện ly. Các ion quan trọng nhất là natri, kali, canxi, magiê, clorua, phosphat và ion bicacbonat hữu cơ. Việc duy trì gradient ion chính xác trên màng tế bào giúp duy trì ổn định áp suất thẩm thấupH.[21] Các ion cũng đặc biệt quan trọng đối với chức năng của tế bào thần kinh, vì điện thế hoạt động trong các này được tạo ra bằng cách trao đổi các chất điện giải giữa dịch ngoại bào và phần lỏng của tế bào, còn gọi là bào tương.[22] Các chất điện giải đi vào và rời các tế bào qua các protein trên màng tế bào được gọi là các kênh ion. Ví dụ, hoạt động co cơ phụ thuộc vào sự dịch chuyển của các ion canxi, natri và kali nhờ các kênh trên màng sinh chất và các ống T. [23]

Kim loại chuyển tiếp thường có mặt với vai trò là các nguyên tố vi lượng trong các sinh vật, kẽmsắt là những nguyên tố phong phú nhất trong nhóm này.[24][25] Những kim loại này được sử dụng trong một số protein như cofactor và rất cần thiết cho hoạt động của các enzyme như catalase và các protein vận chuyển oxy như hemoglobin.[26] Cofactor kim loại được gắn chặt vào các vị trí đặc hiệu trong protein; và mặc dù cofactor của enzyme có thể được biến đổi trong quá trình xúc tác, chúng luôn trở về trạng thái ban đầu vào cuối phản ứng. Các kim loại vi lượng này được hấp thụ vào sinh vật qua các chất vận chuyển đặc hiệu và nếu chúng chưa được sử dụng: chúng sẽ liên kết với các protein dự trữ như ferritin hoặc metallothionein.[27][28]

Liên quan

Tài liệu tham khảo

WikiPedia: Trao_đổi_chất http://www.britannica.com/EBchecked/topic/377325 http://www.sparknotes.com/testprep/books/sat2/biol... http://www.biomed.cas.cz/physiolres/pdf/53%20Suppl... http://bioinformatics.charite.de/supercyp/ http://orbit.dtu.dk/en/publications/from-genomes-t... http://adsabs.harvard.edu/abs/1957Natur.179..988K http://adsabs.harvard.edu/abs/1981RSPTB.293....5B http://adsabs.harvard.edu/abs/1996JMolE..43..293M http://adsabs.harvard.edu/abs/2001PNAS...98..805P http://adsabs.harvard.edu/abs/2003Sci...300..931F